A Beautiful Analytic Combination

generatingRecently, I was looking for good motivating examples for complex analysis in several variables. There was already a short discussion of this question at MathOverflow. Some further searching led me to the book Analytic Combinatorics in Several Variables by Robin Pemantle and Mark C. Wilson. What is this all about and why did I fall in love immediately?

Continue reading


How Algebra Sheds Light on Things

causticEgbert Brieskorn‘s mathematics books contain a lot more flesh than those structured strictly by definitions, lemmas, and theorems. What might be a hindrance to those looking for a quick grasp of a theory is a treasure trove for others who relish an extra of motivation, history, and examples. Currently, I am reading his book Plane Algebraic Curves (authored together with Horst Knörrer) which, already in the introductory chapter, contains many wonderful examples such as linkages, envelopes, and the Hopf fibration. I will come back to some of these topics in later posts. Today’s post contains a quick glimpse of caustics.

Continue reading

Beautiful Binomials

binomialsWhile leafing through the book Geometric Trilogy I – An Axiomatic Approach to Geometry, I came across two nice geometric depictions that are probably widely known but which I would love to have seen back in school. The first one is the geometric illustration of the algebraic fact that (a+b)^2 = a^2+2ab+b^2, the quadratic case of the binomial theorem. This can already be found in Book II of Euclid’s Elements. From this, it is easy to come up with a three dimensional version of the construction giving (a+b)^3=a^3+3a^2b+3ab^2+b^3. Creating a good picture of this is somewhat tedious so I am very glad that I can use this opportunity to link to a wonderful blog where this and other wonderful mathematical illustrations and animations can be found: Hyrodium’s Graphical MathLand.

Continue reading

Euler and the Kids

euler-o-ballBeing on parental leave, somewhat naturally, gave me more time to spend in the kids’ room. After a chance encounter with Mr Pythagoras there some time ago, it was now time  for a scheduled meeting with Mr Euler. The configuration in the image to this post is known to young parents as an Oball. To mathematicians, it is known as the truncated icosahedron. An interesting fact is that because it is constructed entirely from pentagons and hexagons, it has to have exactly 12 pentagons. Let’s see how Mr Euler can convince us of this necessity. Continue reading

What’s on Your Napkin?

whiteboard_graph2Either nature or my brain or both do a wonderful job of clustering related things for me so that I often feel coming along many related things within a short time. Recently, I read Stuart L. Pimm‘s wonderful The World According to Pimm: a Scientist Audits the Earth. It contains the following sentence:

« Robert Colwell, an ecologist from the University of Connecticut, and I were sitting in a bar drinking Antarctica and excitedly drawing lines on paper napkins, the preferred medium of serious scientific discourse worldwide. »

Shortly afterwards, I learned about the blog What’s on my blackboard? showing people’s blackboards (or whiteboards) which are often stunning.

Hence my question: what’s on your napkin? I dare you: grab your smartphones and share images of your napkins full of scientific sketches and/or formulas!

Continue reading

Neighbourly Polyhedra

k4In the plane, it is relatively easy to find four convex polygons which pairwise share an edge and are otherwise disjoint. Can you find five polygons in the plane with these properties? How about polyhedra? How many polyhedra can you find such that any pair of them share a face and are otherwise disjoint?
For me, this is an example where my three-dimensional imagination fails utterly. If you have never thought about this before, I suggest to try finding as many such polyhedra as possible (why not start with seven?) before reading on.

Continue reading